
CSCI2510 Computer Organization

Lecture 05: Program Execution

Ming-Chang YANG

mcyang@cse.cuhk.edu.hk

Reading: Chap. 2.3~2.7, 2.10, 4

mailto:mcyang@cse.cuhk.edu.hk

Recall: Program Execution

• A computer is governed by instructions.

– To perform a given task, a program consisting of a list of

machine instructions is stored in the memory.

• Data to be used as operands are also stored in the memory.

– Individual instructions are brought from the memory into the

processor, one after another, in a sequential way (normally).

– The processor executes the specified operation/instruction.

CSCI2510 Lec05: Program Execution 2023-24 T1 2

Outline

• Flow for Generating/Executing a Program

• Instruction Execution and Sequencing

• Branching

– Condition Codes

• Subroutines

– Stack

– Subroutine Linkage

– Subroutine Nesting

– Parameter Passing

– The Stack Frame

CSCI2510 Lec05: Program Execution 2023-24 T1 3

lw $0, 0($2)

lw $1, 4($2)

sw $1, 0($2)

sw $0, 4($2)

Recall: Language Translation

CSCI2510 Lec05: Program Execution 2023-24 T1 4

https://gerardnico.com/code/lang/machine

https://clip2art.com/explore/Boy%20clipart%20teacher/

High-level Language

Assembly Language

Machine Language

temp = v[k];

v[k] = v[k+1];

v[k+1] = temp;

TEMP = V(k);

V(k) = V(k+1);

V(k+1) = TEMP;

lw: loads a word from memory into a register

sw: saves a word from a register into RAM

$0,$1,$2: registers

0($2): treats the value of register $2 + 0 bytes as a location

4($2): treats the value of register $2 + 4 bytes as a location

0000 1001 1100 0110 1010 1111 0101 1000

1010 1111 0101 1000 0000 1001 1100 0110

1100 0110 1010 1111 0101 1000 0000 1001

0101 1000 0000 1001 1100 0110 1010 1111

C/Java
Compiler

Fortran
Compiler

MIPS Assembler

5
Memory

Executable

Program

first instruction

Generating/Executing a Program

• Compiler: Translate a high-level language source

programs into assembly language source programs

• Assembler: Translate assembly language source

programs into object files of machine instructions

• Linker: Combine the contents of object files and library

files into one object/executable program

– Library File: Collect useful subroutines of application programs

• Loader: Load the program into memory and load the

address of the first instruction into program counter (PC)

CSCI2510 Lec05: Program Execution 2023-24 T1

Source

File
Source

File

Object

File

Object

ProgramLinker

Library

File
Library

File

Source

File
Source

File

Source

File

High-Level

Language

Source

File
Source

File

Source

File

Assembly

Language

Loader

Disk
CPU

PC

Compiler Assembler

Outline

• Flow for Generating/Executing a Program

• Instruction Execution and Sequencing

• Branching

– Condition Codes

• Subroutines

– Stack

– Subroutine Linkage

– Subroutine Nesting

– Parameter Passing

– The Stack Frame

CSCI2510 Lec05: Program Execution 2023-24 T1 6

Program Counter & Instruction Register

CSCI2510 Lec05: Program Execution 2023-24 T1

• To direct the instruction execution and sequencing,

two special registers are needed:

– Program Counter (PC) contains the memory address of

the NEXT instruction to be fetched and executed.

– Instruction Register (IR) holds the CURRENT instruction

that is being executed.
7

n general purpose registers

PC

IR

R0

R1

Rn-1

Control

ALU

Processor-Memory Interface

Processor

…

Program Counter
(special register)

Instruction

Register
(special register)

R2

CSCI2510 Lec05: Program Execution 2023-24 T1 8

• Consider a machine:

– RISC instruction set

– 32-bit word, 32-bit instruction

– Byte-addressable memory

• Given the task 𝐶=𝐴+𝐵 (Lec04)

– Implemented as C ← [A] + [B]

– Possible RISC-style program

segment:
• Load R2, A

• Load R3, B

• Add R4, R2, R3

• Store R4, C

Instruction Execution & Sequencing (1/3)

data for the program

data for the program

data for the program

CSCI2510 Lec05: Program Execution 2023-24 T1 9

• Assume the 4 instructions

are loaded in successive

memory locations:

– Starting at location i

– The 2nd, 3rd, 4th instructions

are at i + 4, i + 8, and i + 12

• Each instruction is 4 bytes

• To execute this program

– The program counter (PC)

register in the processor

should be loaded with the

address of the 1st instruction.

• PC: holds the address of the

next instruction to be executed.

Instruction Execution & Sequencing (2/3)

four-

instruction

program

segment

data for the program

data for the program

data for the program

CSCI2510 Lec05: Program Execution 2023-24 T1 10

Instruction Execution & Sequencing (3/3)

four-

instruction

program

segment

data for the program

data for the program

data for the program

PC →

• Straight-Line Sequencing:

– CPU fetches and executes

instructions indicated by PC,

one at a time, in the order of

increasing addresses.

1) Instruction Fetch:

• IR ← [[PC]]

• PC ← [PC] + 4 (32-bit word)
✓ PC contains the memory address

of the next instruction.

✓ IR holds the current instruction.

2) Instruction Execute:

• Interpret (or decode) IR

• Perform the operation

Class Exercise 5.1

• Consider a task of adding n num:

– The symbolic memory addresses of the

n numbers: NUM1, NUM2, …, NUMn

– The result is in memory location SUM.

• Please write the program segment to

add n num into R2.

• Answer:

CSCI2510 Lec05: Program Execution 2023-24 T1 11

Student ID:

Name:

Date:

Outline

• Flow for Generating/Executing a Program

• Instruction Execution and Sequencing

• Branching

– Condition Codes

• Subroutines

– Stack

– Subroutine Linkage

– Subroutine Nesting

– Parameter Passing

– The Stack Frame

CSCI2510 Lec05: Program Execution 2023-24 T1 13

Branching: Implementing a Loop (1/2)

• The body of the loop:

– Start: at location LOOP

– Body: the repeated task

• E.g. “Load-Add” instructions

– End: at Branch_if_[R2]>0

• Assume that

– n is stored in memory location N.

– R2 represents the number of
times (i.e. n) the loop is executed.

• Within the body of the loop,

Subtract R2, R2, #1

– Decreasing the contents of R2

by 1 each time through the loop.
CSCI2510 Lec05: Program Execution 2023-24 T1 14

LOOP

LOOP

N n

Branching: Implementing a Loop (2/2)

• How to “jump back” to LOOP?

 Branch: loads a new

memory address (called

branch target) into the PC.

 Conditional Branch:

causes a branch only if a

specified condition is

satisfied.

• Branch_if_[R2]>0 LOOP

– A conditional branch

instruction that causes

branch to location LOOP.

– Condition: If the contents of

R2 are greater than zero.
CSCI2510 Lec05: Program Execution 2023-24 T1 15

LOOP

LOOP

N

if [R2] <= 0

if [R2] > 0

n

Class Exercise 5.2

• The below program intends to adding a list of n
numbers. In which, we want to use the indirect

addressing to access successive numbers in the list.

• Please fill in the blank field below:

CSCI2510 Lec05: Program Execution 2023-24 T1 16

LABEL OPCODE OPERAND COMMENT

Load R2, N Load the size of the list.

Clear R3 Initialize sum to 0.

Move R4, addr NUM1 Get address of the first number.

LOOP: Load Get the next number.

Add R3, R3, R5 Add this number to sum.

Add R4, R4, #4 Increment the pointer to the list.

Subtract R2, R2, #1 Decrement the counter.

Branch_if_[R2]>0 LOOP Branch back if not finished.

Store R3, SUM Store the final sum.

An Example of Nested Loops

CSCI2510 Lec05: Program Execution 2023-24 T1 18

Chap. 2.12.2, Computer Organization and Embedded Systems (6th Ed.)

LOOP1:

LOOP2:

Branch_if_[R5]> [R7] LOOP2

Branch_if_[R4]≥ [R2] LOOP1

addr T

addr P

Outline

• Flow for Generating/Executing a Program

• Instruction Execution and Sequencing

• Branching

– Condition Codes

• Subroutines

– Stack

– Subroutine Linkage

– Subroutine Nesting

– Parameter Passing

– The Stack Frame

CSCI2510 Lec05: Program Execution 2023-24 T1 19

Condition Codes (1/2)

CSCI2510 Lec05: Program Execution 2023-24 T1 20

Common Condition Flags

N (negative) Set to 1 if the result is negative; otherwise, cleared to 0

Z (zero) Set to 1 if the result is 0; otherwise; otherwise, cleared to 0

V (overflow) Set to 1 if arithmetic overflow occurs; otherwise, cleared to 0

C (carry) Set to 1 if a carry-out occurs; otherwise, cleared to 0

• Operations performed by the processor typically

generate number results of positive, negative, or zero.

– E.g., Subtract R2, R2, #1 (in the Loop program)

• Condition Code Flags: keep the information about

the results of the “most recent” instruction.

– The subsequent instruction may use it for different purposes.

– Condition Code Register (or Status Register): groups

and stores these flags in a special register in the processor.

Condition Codes (2/2)

• Consider the Conditional Branch example:

– If condition codes are used, the branch instruction

(Branch_if_[R2]>0 LOOP) could be simplified as:

Branch>0 LOOP

without indicating the register involved in the test.

– This new instruction causes a branch if neither N nor Z is 1.

• The subtract instruction would cause both N and Z flags to be

cleared to 0 if R2 is still greater than 0.

CSCI2510 Lec05: Program Execution 2023-24 T1 21

Common Condition Flags

N (negative) Set to 1 if the result is negative; otherwise, cleared to 0

Z (zero) Set to 1 if the result is 0; otherwise; otherwise, cleared to 0

V (overflow) Set to 1 if arithmetic overflow occurs; otherwise, cleared to 0

C (carry) Set to 1 if a carry-out occurs; otherwise, cleared to 0

Recall: Overflow in Integer Arithmetic

• Overflow: The result of an arithmetic operation does

not fall within the representable range.
– In Unsigned Number Arithmetic:

• Rule: A carry-out of 1 from the MSB-bit always indicates an overflow.

– E.g. (1111)2 + (0001)2 = (1 0000)2  overflowed

– E.g. (0111)2 + (0001)2 = (0 1000)2  no overflow

– In 2’s-complement Signed Number Arithmetic:

• The carry-out bit from the sign-bit is not an indicator of overflow.

– E.g. (+7)10 + (+4)10 = (0111)2 + (0100)2 = (0 1011)2 = (-5)10

– E.g. (-4)10 + (-6)10 = (1100)2 + (1010)2 = (1 0110)2 = (+6)10

• Observation: Addition of opposite sign numbers never causes overflow.

– E.g. (+7)10 + (-6)10 = (0111)2 + (1010)2 = (0001)2 = (+1)10  no overflow

• Rule: If the two numbers are the same sign and the result is the

opposite sign, we say that an overflow has occurred.

– E.g. (+7)10 + (+4)10 = (0111)2 + (0100)2 = (1011)2 = (-5)10  overflowed

– E.g. (-4)10 + (-6)10 = (1100)2 + (1010)2 = (0110)2 = (+6)10  overflowed

CSCI2510 Lec05: Program Execution 2023-24 T1 22

Class Exercise 5.3

CSCI2510 Lec05: Program Execution 2023-24 T1 23

• Given two 4-bit registers R1 and R2 storing signed

integers in 2’s-complement format. Please specify the
condition flags that will be affected by Add R2, R1:

if 𝑅1 = 2 10 = 0010 2, 𝑅2 = –5 10 = 1011 2

Answer: __________________________________

if 𝑅1 = 2 10 = 0010 2, 𝑅2 = –2 10 = 1110 2

Answer: __________________________________

if 𝑅1 = 7 10 = 0111 2, 𝑅2 = 1 10 = 0001 2

Answer: __________________________________

if 𝑅1 = 5 10 = 0101 2, 𝑅2 = −2 10 = 1110 2

Answer: __________________________________

Outline

• Flow for Generating/Executing a Program

• Instruction Execution and Sequencing

• Branching

– Condition Codes

• Subroutines

– Stack

– Subroutine Linkage

– Subroutine Nesting

– Parameter Passing

– The Stack Frame

CSCI2510 Lec05: Program Execution 2023-24 T1 25

Branch vs. Subroutine

• Branch:

– The instruction jumping to any instruction by

loading its memory address into PC.

• It’s also common to perform a particular

task many times on different values.

• Subroutine/Function Call

– Subroutine: a block of instructions that will be

executed each time when calling.

– Subroutine/Function Call: when a program

branches to and back from a subroutine.

• Call: the instruction branching to the subroutine.

• Return: the instruction branching back to the caller.

– “Stack” is essential for subroutine calls.
CSCI2510 Lec05: Program Execution 2023-24 T1 26

…

LOOP: LOOP

Body

Branch

…

…

Call

…

FUNC: FUNC

Body

Return

Outline

• Flow for Generating/Executing a Program

• Instruction Execution and Sequencing

• Branching

– Condition Codes

• Subroutines

– Stack

– Subroutine Linkage

– Subroutine Nesting

– Parameter Passing

– The Stack Frame

CSCI2510 Lec05: Program Execution 2023-24 T1 27

Stack

• Stack is a list of data elements (usually words):

– Elements can only be removed at one end of the list.

• This end is called the top, and the other end is called the bottom.

• Examples: a stack of coins, plates on a tray, a pile of books, etc.

– Push: Placing a new item at the top end of a stack

– Pop: Removing the top item from a stack

– Stack is often called LIFO or FILO stack:

• Last-In-First-Out (LIFO): The last item is the first one to be removed.

• First-In-Last-Out (FILO): The first item is the last one to be removed.

CSCI2510 Lec05: Program Execution 2023-24 T1 28

https://en.wikipedia.org/wiki/Stack_(abstract_data_type)

top

bottom

• Modern processors usually provide native support to

stack (called processor stack).

Stack

(TOP)
SP

Processor Stack (1/2)

CSCI2510 Lec05: Program Execution 2023-24 T1 29

– A processor stack can be

implemented by using a portion

of the main memory.

• Data elements of a stack occupy

successive memory locations.

• The first element is placed in

location BOTTOM (larger address).

• The new elements are pushed

onto the TOP of the stack.

– Stack Pointer (SP): a special

processor register to keep track

of the address of the TOP item

of processor stack.

Memory

Stack

(TOP)
SP

Processor Stack (2/2)

• Given a stack of word data items, and consider a

byte-addressable memory with a 32-bit word:

CSCI2510 Lec05: Program Execution 2023-24 T1 30

– Push an item in Rj onto the stack:
Subtract SP, SP, #4

Store Rj, (SP)

• The Subtract instruction first subtracts 4 from the

contents of SP and places the result in SP.

• The Store instruction then places the content of Rj

onto the stack.

– Pop the top item into Rj
Load Rj, (SP)

Add SP, SP, #4

• The Load instruction first loads the top value from the

stack into register Rj

• The Add instruction then increments the stack pointer

by 4.

Recall: Additional Addressing Modes

• Most CISC processors have all of the five basic

addressing modes—Immediate, Register, Absolute,

Indirect, and Index.

• Three additional addressing modes are often found in

CISC processors:

CSCI2510 Lec05: Program Execution 2023-24 T1 31

Address Mode Assembler Syntax Addressing Function

1*) Autoincrement (𝑅𝑖) +
𝐸𝐴 = 𝑅𝑖
𝑅𝑖 = 𝑅𝑖 + 𝑆

2*) Autodecrement −(𝑅𝑖)
𝑅𝑖 = 𝑅𝑖 − 𝑆
𝐸𝐴 = 𝑅𝑖

3*) Relative 𝑋(𝑃𝐶) 𝐸𝐴 = 𝑃𝐶 + 𝑋

EA: effective address

X: index value

S: increment/decrement step

Class Exercise 5.4

CSCI2510 Lec05: Program Execution 2023-24 T1 32

(a) Before Push & Pop (b) After Push (c) After Pop

X X

• Given the contents of the stack and the register Rj as

below. Specify the location of SP and the content of

register Rj after one push and one pop operations

are performed consecutively.

19

Outline

• Flow for Generating/Executing a Program

• Instruction Execution and Sequencing

• Branching

– Condition Codes

• Subroutines

– Stack

– Subroutine Linkage

– Subroutine Nesting

– Parameter Passing

– The Stack Frame

CSCI2510 Lec05: Program Execution 2023-24 T1 34

Revisit: Subroutine

• Recall:

– When a program branches to a subroutine

we say that it is calling the subroutine.

– After a subroutine calling, the subroutine is

said to return to the program that called it.

• Continuing immediately after the instruction that

called the subroutine.

CSCI2510 Lec05: Program Execution 2023-24 T1 35

…

Call

…

FUNC: FUNC

Body

Return

• However, the subroutine may be called from any

places in a calling program.

• Thus, provision must be made for returning to the

appropriate location.

– That is, the content of the PC must be saved by the Call

instruction to enable correct return to the calling program.

• Subroutine Linkage method: the way makes it
possible to Call and Return from subroutines.

• The simplest method: saving the return address in a

special processor register called the link register.

– The Call instruction can be implemented as a special

branch instruction:

 Keep the content of the PC in the link register.

 Branch to the target address specified by Call instruction.

– The Return instruction can be implemented as a special

branch instruction as well:

 Branch to the address kept in the link register by Return

instruction.

Subroutine Linkage

CSCI2510 Lec05: Program Execution 2023-24 T1 36

Example of Subroutine Linkage

CSCI2510 Lec05: Program Execution 2023-24 T1 37

204

1000

204

 Keep [PC] into

the link register.

 Branch to the

target address
specified by Call

Branch back to

the address kept

in the link register
by Return

Enough?Enough?

Outline

• Flow for Generating/Executing a Program

• Instruction Execution and Sequencing

• Branching

– Condition Codes

• Subroutines

– Stack

– Subroutine Linkage

– Subroutine Nesting

– Parameter Passing

– The Stack Frame

CSCI2510 Lec05: Program Execution 2023-24 T1 38

Subroutine Nesting (1/3)

• Subroutine Nesting: One subroutine calls another

subroutine or itself (i.e., recursion).

– If the return address of the second call is also stored in the

link register, the first return address will be lost … ERROR!

– Subroutine nesting can be carried out to ANY DEPTH …

CSCI2510 Lec05: Program Execution 2023-24 T1 39

https://slideplayer.com/slide/7603076/

Subroutine Nesting (2/3)

• Observation: The return address needed for the first

return is the last one generated in the nested calls.

– That is, return addresses are generated and used in a

last-in–first-out (LIFO) order.

CSCI2510 Lec05: Program Execution 2023-24 T1 40

Subroutine Nesting (3/3)

• Processor stack is useful to store subroutine linkage:

– Call instruction:

 Keep the content of the PC in the link register.

 Branch to the target address specified by Call instruction.

 Push the contents of the link register to the processor stack.

– Return instruction:

 Pop out the saved subroutine linkage from the processor

stack to restore the link register.

 Branch to the address kept in the link register by Return

instruction.

CSCI2510 Lec05: Program Execution 2023-24 T1 41

top

bottom

main

func1()

NEW →

NEW →

Outline

• Flow for Generating/Executing a Program

• Instruction Execution and Sequencing

• Branching

– Condition Codes

• Subroutines

– Stack

– Subroutine Linkage

– Subroutine Nesting

– Parameter Passing

– The Stack Frame

CSCI2510 Lec05: Program Execution 2023-24 T1 42

Parameter Passing

• Parameter Passing: The exchange of information

between a calling program and a subroutine.

– When calling a subroutine, a program must provide the

parameters (i.e., operands or their addresses) to be used.

– Later, the subroutine returns other parameters, which are

the results of the computation.

CSCI2510 Lec05: Program Execution 2023-24 T1 43

http://coder-tronics.com/c-programming-functions-pt1/

Parameter Passing via Registers

CSCI2510 Lec05: Program Execution 2023-24 T1

• The simplest way is placing parameters in registers.

– Let’s revisit the program that adds up a list of numbers:

• R2 & R4 pass the list size & the address of the first num;

• R3 passes back the sum computed by the subroutine.

R4

R3 R3

Calling Program

Subroutine

R2
addr NUM1

44

• What kind of parameters can we pass?

• Passing by Value

– The actual number is passed by an immediate value.

• Passing by Reference (more powerful, be careful!)

– Instead of passing the actual values in the list, the routine

passes the starting address (i.e. reference) of the number.

CSCI2510 Lec05: Program Execution 2023-24 T1 45

Parameter Passing by Value / Reference

https://www.mathwarehouse.com/programming/passing

-by-value-vs-by-reference-visual-explanation.php

Class Exercise 5.5

CSCI2510 Lec05: Program Execution 2023-24 T1 46

• Consider the calling program that calls the subroutine

LISTADD to add a list of n numbers, in which

– The size n is stored in memory location/address N, and

– NUM1 is the memory address for the first number.

• Are N and NUM1 passed as values or references?

Calling Program
addr NUM1

Issues of Para. Passing via Registers?

CSCI2510 Lec05: Program Execution 2023-24 T1

• What if the subroutine is going to use R2 and R4, or any other

registers that contain useful information to the calling program?

• What if the subroutine calls itself (i.e., recursion)?

• What if there are more parameters than #registers?

Processor stack can, once again, help with these issues!

Calling Program

Subroutine

addr NUM1

48

Outline

• Flow for Generating/Executing a Program

• Instruction Execution and Sequencing

• Branching

– Condition Codes

• Subroutines

– Stack

– Subroutine Linkage

– Subroutine Nesting

– Parameter Passing

– The Stack Frame

CSCI2510 Lec05: Program Execution 2023-24 T1 49

The Stack Frame

• Stack Frame: a private workspace (in the processor

stack) for each of the called subroutine.

– It is allocated when subroutine is entered and deallocated

when the subroutine returns to the calling program.

CSCI2510 Lec05: Program Execution 2023-24 T1

– It is multi-functional and can be used to:

• Pass parameters (and the results);

• Keep the subroutine linkage;

• Accommodate local variables;

• Backup the contents of registers

(which will be used by the subroutine).

– It is also useful to have a general-

purpose register, called frame pointer

(FP), for easy access to the saved info.

• E.g., for parameters: (FP), 4(FP), 8(FP), …

• E.g., for subroutine linkage: -4(FP)

saved [R3]

saved [R2]

saved [R1]

localvar3

localvar2

localvar1

saved [FP]

subroutine linkage

param3

param2

param1

Memory

SP
(stack pointer)

…

Stack

Frame
(for the called

routine)

50

FP
(frame pointer)

The Stack Frame: Allocation (1/2)

CSCI2510 Lec05: Program Execution 2023-24 T1 51

param3

param2

param1

Memory

SP
(stack pointer)

…

subroutine linkage

param3

param2

param1

Memory

SP
(stack pointer)

…

saved [FP]

subroutine linkage

param3

param2

param1

Memory

SP
(stack pointer)

…

 Calling program

pushes param.

and calls the sub.;

 The subroutine

saves the sub.

linkage (from link reg.);

 The subroutine

saves the FP
(which may contain info of

use to the calling program);

Old TOS
(top of stack)

Old TOS
(top of stack)

Old TOS
(top of stack)

The Stack Frame: Allocation (2/2)

CSCI2510 Lec05: Program Execution 2023-24 T1 52

subroutine linkage

param3

param2

param1

Memory

SP
(stack pointer)

…

Old TOS
(top of stack)

saved [FP]

subroutine linkage

param3

param2

param1

Memory

SP
(stack pointer)

…

Old TOS
(top of stack)

saved [R3]

saved [R2]

saved [R1]

localvar3

localvar2

localvar1

saved [FP]

subroutine linkage

param3

param2

param1

Memory

SP
(stack pointer)

…

Old TOS
(top of stack)

localvar3

localvar2

localvar1

saved [FP]

FP
(frame pointer)

FP
(frame pointer)

FP
(frame pointer)

 The subroutine

updates FP;
(Why here? It is about

“calling convention”!)

 The subroutine

creates local

variables;

 The subroutine

saves the to-be-

used registers.

Class Exercise 5.6

• During the allocation of the stack

frame, the frame pointer (FP) is

updated in Step .

• Can we have the FP updated

earlier (say, as Step  or )?

CSCI2510 Lec05: Program Execution 2023-24 T1 53

The Stack Frame: Deallocation (1/2)

CSCI2510 Lec05: Program Execution 2023-24 T1 55

subroutine linkage

param3

param2

param1

Memory

…

saved [FP]

subroutine linkage

param3

param2

param1

Memory

…

subroutine linkage

param3

param2

param1

Memory

…

saved [FP]

 The subroutine

restores the

“used” registers;

 The subroutine

deletes the local

variables;

 The subroutine

restores the FP

with saved [FP];

localvar3

localvar2

localvar1

saved [R3]

saved [R2]

saved [R1]

SP
(stack pointer)

localvar3

localvar2

localvar1

saved [FP]
SP

(stack pointer)

SP
(stack pointer)

Old TOS
(top of stack)

Old TOS
(top of stack)

Old TOS
(top of stack)

FP
(frame pointer)

FP
(frame pointer)

FP
(frame pointer)

saved
[FP]

The Stack Frame: Deallocation (2/2)

CSCI2510 Lec05: Program Execution 2023-24 T1 56

subroutine linkage

param3

param2

param1

Memory

SP
(stack pointer)

…

param3

param2

param1

Memory

…

Memory

…

SP
(stack pointer)

SP
(stack pointer)

 The subroutine

returns to the

callee (how?);

 Calling program

pops out param.
(and get results, if any).

 The stack frame

is deallocated

entirely.

Stack

Frame
(for the called

routine)

Old TOS
(top of stack)

Old TOS
(top of stack)

Class Exercise 5.7

• We have demonstrated how

the parameters can be

passed to the subroutine via

the stack frame.

• Can you think of a way to

return the computed results

to the calling program via the

stack frame?

CSCI2510 Lec05: Program Execution 2023-24 T1 57

Calling Convention

• Calling convention is an implementation-level

scheme about:

– How subroutines receive parameters from their caller and

how they return a result;

– How the caller and the callee (i.e., the subroutine)

cooperate to prepare and restore the environment (e.g., the

stack frame).

• In practice, there are, for sure, different calling

conventions.

• What we introduced in lectures and tutorials is mainly

based on RISC-V calling convention.

You may also have your own calling convention!

CSCI2510 Lec05: Program Execution 2023-24 T1 59

https://www.google.com/search?q=risc-v+calling+convention&oq=RISC-V+calling&gs_lcrp=EgZjaHJvbWUqBwgBEAAYgAQyBggAEEUYOTIHCAEQABiABDIICAIQABgIGB4yCAgDEAAYCBge0gEIMTk1N2owajeoAgCwAgA&sourceid=chrome&ie=UTF-8

Summary (1/2)

• Flow for Generating/Executing a Program

• Instruction Execution and Sequencing

• Branching

– Condition Codes

• Subroutines

– Stack

– Subroutine Linkage

– Subroutine Nesting

– Parameter Passing

– The Stack Frame

CSCI2510 Lec05: Program Execution 2023-24 T1 60

Summary (2/2)

CSCI2510 Lec05: Program Execution 2023-24 T1 61

Control ALU

P
ro

c
e
s
s
o

r-
M

e
m

o
ry

 I
n

te
rf

a
c
e

Processor

PC

Program Counter
(special register)

IR

Instruction

Register
(special register)

R0

R1

Rn-1

…

R2

CC

Condition Code

Register
(special register)

Link

Link Register
(special register)

SP

Stack Pointer

Register
(special register)

FP

Frame Pointer

Register
(general-purpose)

n general

purpose

registers

Memory

P
ro

c
e
s
s
o

r

S
ta

c
k

Remark: Another Convention

CSCI2510 Lec05: Program Execution 2023-24 T1 62

Memory

P
ro

c
e
s
s
o

r

S
ta

c
k

𝟐𝒌 − 𝟏

𝟎

Memory
P

ro
c
e
s
s
o

r

S
ta

c
k vs.

	預設章節
	投影片 1: CSCI2510 Computer Organization Lecture 05: Program Execution
	投影片 2: Recall: Program Execution
	投影片 3: Outline

	Flow for Generating/Executing a Program
	投影片 4: Recall: Language Translation
	投影片 5: Generating/Executing a Program

	Instruction Execution and Sequencing
	投影片 6: Outline
	投影片 7: Program Counter & Instruction Register
	投影片 8: Instruction Execution & Sequencing (1/3)
	投影片 9: Instruction Execution & Sequencing (2/3)
	投影片 10: Instruction Execution & Sequencing (3/3)
	投影片 11: Class Exercise 5.1

	Branching
	投影片 13: Outline
	投影片 14: Branching: Implementing a Loop (1/2)
	投影片 15: Branching: Implementing a Loop (2/2)
	投影片 16: Class Exercise 5.2
	投影片 18: An Example of Nested Loops

	Condition Codes
	投影片 19: Outline
	投影片 20: Condition Codes (1/2)
	投影片 21: Condition Codes (2/2)
	投影片 22: Recall: Overflow in Integer Arithmetic
	投影片 23: Class Exercise 5.3

	Subroutines
	投影片 25: Outline
	投影片 26: Branch vs. Subroutine

	Stack
	投影片 27: Outline
	投影片 28: Stack
	投影片 29: Processor Stack (1/2)
	投影片 30: Processor Stack (2/2)
	投影片 31: Recall: Additional Addressing Modes
	投影片 32: Class Exercise 5.4

	Subroutine Linkage
	投影片 34: Outline
	投影片 35: Revisit: Subroutine
	投影片 36: Subroutine Linkage
	投影片 37: Example of Subroutine Linkage

	Subroutine Nesting
	投影片 38: Outline
	投影片 39: Subroutine Nesting (1/3)
	投影片 40: Subroutine Nesting (2/3)
	投影片 41: Subroutine Nesting (3/3)

	Parameter Passing
	投影片 42: Outline
	投影片 43: Parameter Passing
	投影片 44: Parameter Passing via Registers
	投影片 45: Parameter Passing by Value / Reference
	投影片 46: Class Exercise 5.5
	投影片 48: Issues of Para. Passing via Registers?

	The Stack Frame (RISC-V)
	投影片 49: Outline
	投影片 50: The Stack Frame
	投影片 51: The Stack Frame: Allocation (1/2)
	投影片 52: The Stack Frame: Allocation (2/2)
	投影片 53: Class Exercise 5.6
	投影片 55: The Stack Frame: Deallocation (1/2)
	投影片 56: The Stack Frame: Deallocation (2/2)
	投影片 57: Class Exercise 5.7
	投影片 59: Calling Convention

	Summary
	投影片 60: Summary (1/2)
	投影片 61: Summary (2/2)
	投影片 62: Remark: Another Convention

